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Topology Change and Context Dependence
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The nonclassical features of quantum mechanics are reproduced using models
constructed with a classical theory—general relativity. The inability to define
complete initial data consistently and independently of future measurements,
nonlocality, and the non-Boolean logical structure are reproduced by these
examples. The key feature of the models is the role of topology change. It is the
breakdown of causal structure associated with topology change that leads to the
apparently nonclassical behavior. For geons, topology change is required to
describe the interaction of particles. It is therefore natural to regard topology
change as an essential part of the measurement process. This leads to models in
which the measurement imposes additional nonredundant boundary conditions.
The initial state cannot be described independently of the measurement and there
is a causal connection between the measurement and the initial state.

1. INTRODUCTION

It is well known that quantum mechanical systems cannot be described
as classical systems evolving in time independently of future measurements
(Belinfante, 1973; Beltrametti and Cassinelli, 1981). Attempts to construct
classical models either fail or have nonlocal, measurement-dependent, influ-
ences. The Kochen—Specker paradox (Belinfante 1973) is an example of
the inability to assign initial data (particle spins) independently of future
measurements. While in Bohm’s theory particle positions and momenta can
be defined, they are insufficient to determine the subsequent evolution—the
desired results are only obtained at the expense of introducing a nonlocal
influence in the form of the pilot wave.

Common to any interpretation of quantum mechanics is the non-Boolean
logical structure (Isham, 1968; Beltrametti and Cassinelli, 1981) of the propo-
sitions. The propositions have to be defined differently in the different inter-
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pretations (Isham 1968, Section 9.2), so that in some interpretations the
propositions are about properties held by the particle, while in other interpreta-
tions this would be meaningless and the propositions are statements about
the state preparation. The non-Boolean logic of propositions characterizes
quantum theory and distinguishes it from classical theory. Once a measure-
ment is defined, and propositions are restricted to those that relate to the
chosen measurement apparatus, the results have the familiar logical struc-
ture—that this must be the case is explained by Mackey (see Belinfante,
1973; Beltrametti and Cassinelli, 1981, Chapter 13). Unlike any classical
theory, quantum mechanics is therefore a context-dependent theory.

It is known that if a breakdown in causal structure is an inherent feature
of elementary particles, then the propositions associated with the theory could
have the non-Boolean logical structure of quantum mechanics (Hadley, 1997).
In this paper models are constructed upon which it is impossible to define
complete initial data independently of future measurements. This context
dependence is the essence of the Kochen—Specker paradox. Another striking
characteristic of quantum theory is the nonlocality predicted, and confirmed,
in EPR experiments—this, too, is reproduced in these examples.

As early as 1957 Dennis Sciama pointed out that quantum mechanics
was a way to account for hidden variables where half of them were in the
future (Sciama, 1957).

A common feature of the models presented in this paper is a breakdown
of the causal structure in such a way that there exists a causal link from the
measurement to the initial data, and that the measurement itself imposes
nonredundant boundary conditions. It is known that a theory with these
properties will have the logical structure of quantum mechanics. Apart from
exotic alternatives (Fivel, 1994), any vector representation will have the
familiar Hilbert space structure, operators, and commutation relations.

Models of elementary particles based on geons (where some or all of
the particle’s properties arise from the topology of spacetime) require topology
change to occur when interactions take place. Theorems of Geroch and
Tipler place severe constraints on topology change which prevent it occurring
without a breakdown of the causal structure in one sense or another. The
relationship between topology change and nontrivial causal structure is
exploited in this paper. By associating topology change with the measurement
process in quantum mechanics, we are naturally led to models which display
context dependence.

Geroch’s theorem (Geroch, 1967) shows that for a compact time-oriented
manifold without closed timelike curves, CTCs, the topology cannot change
from one spacelike boundary to the other. Some authors consider the causal
structure to be more fundamental and have examined spacetimes with singu-
larities in order to allow topology change (Dowker and Garcia, 1997; Sorkin,
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1997). This paper does not consider singularities; it retains the framework
of classical general relativity—including a continuous spacetime manifold
with a continuous metric. The breakdown in causal structure is actually seen
as advantageous because it offers a way of reconciling classical and quantum
physics (Hadley, 1997). The examples are created by relaxing the assumptions
of Geroch’s theorem. We consider in turn manifolds which are not time-
orientable, those with CTCs, noncompact manifolds, and finally examples
where the spacelike boundaries cannot be defined. In each case the properties
are compared with the phenomena previously associated exclusively with
quantum theories. If topology change is considered to be an integral part of the
measurement process, then these models are examples of context dependence
which is the distinguishing characteristic of quantum theory.

2. NOTATION

The paper is concerned with spacetime manifolds of 1 + 1, 2 + 1, and
3 + 1 dimensions with a Lorentzian metric of signature (—, +), (—, +, +),
and (—, +, +, +), respectively. The combination of the manifold and the
Lorentzian metric is referred to as a geometry. The metric defines the concept
of a timelike ray (a pair of timelike vectors Y and —7Y corresponding to a
forward and backward direction in time). A geometry which is time-orientable
admits a continuous choice of timelike vector ¥ and is called isochronous .
An isochronous manifold M therefore admits a continuous vector field. Indeed
a manifold which admits a continuous vector field can be endowed with a
Lorentzian metric such that it is isochronous (see, for example, Borde, 1997;
Reinhart, 1963).

The constructions which follow comprise a geometry M (of dimension
n + 1) whose boundary is the disjoint union of two manifolds X; and X,
(each of dimension 7). By a topology change we mean that the topology of
2, differs from that of X,. From the results above, a timelike vector field
can be constructed in the isochronous case. A unique timelike curve can be
constructed through any point such that the curve is everywhere tangent to
the vector field. The curves, but not the vector field, can also be constructed
in a geometry which is not isochronous.

Most of the paper is concerned with compact geometries. An important
class of noncompact spacetimes to which Geroch’s theorem and related
considerations also apply is made up of externally simple spacetimes (Borde,
1997). A spacetime M is externally simple if there exist compact regions X,
and X, such that £, — £, is diffeomorphic to , — Z,.

3. THEOREMS

The following theorem, attributed to C. W. Misner, is a result special
to 3 + 1 dimensions:
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Theorem 1 (Misner). Let X1 and X, be two compact 3-manifolds. Then
there exists a compact geometry M whose boundary is the disjoint union of
21 and X, and in which X; and X, are both spacelike.

A proof can be found in Geroch (1967) or Yodzis (1972). The significance
of the theorem is that, in the three space and one time dimension of primary
interest, a timelike vector field can always be constructed. There are no
topological obstructions as there are in other dimensions.

Theorem 2 (Geroch). Let M be a compact 4-manifold with metric signa-
ture (—, +, +, +) whose boundary is the disjoint union of two compact
spacelike manifolds X; and X,. Suppose M is isochronous and has no closed
timelike curves (CTCs). Then X and X, are diffeomorphic, and further, M
is topologically X; X [0, 1].

Although a 4-manifold was specified (three space and one time dimen-
sion) in the original theorem, the proof is also valid for 1 + 1 and 2 + 1
dimensions.

Essentially, in order for topology change to take place from one spacelike
boundary to another, at least one timelike ray must pass through X; but not
2, or vice versa. Geroch shows that for compact manifolds there are only
two ways for this to happen: (1) The timelike rays that cross the surface X;
and enter M never leave the interior of M, in which case, due to the assumed
compactness, there must be a CTC within M; or (2) the timelike rays that
cross the surface X; and enter M, also exit through X, which implies that
M cannot be isochronous.

The first case is further refined by Tipler, who assumes that M is
isochronous:

Theorem 3 (Tipler). Topology change cannot occur on an isochronous 4-
geometry which satisfies Einstein’s equations and the weak energy condition.

Note that Einstein’s equations, by themselves, place no constraint what-
soever on the topology (or even the metric). It is only the combination
of the equations with some assumptions about physically realistic energy-
momentum tensors that places a kinematic constraint.

4. MANIFOLDS WHICH ARE NOT ISOCHRONOUS

When time-orientability is not required, some timelike curves from X,
can enter the manifold and exit through X, rather than X,. A simple example
is ' — @, as depicted in Fig. 1, formed from the cylinder S' X I, where /
is an interval [0, t]. The first spacelike surface 2 is S'; in place of the second
surface we identify antipodal points to create a Mobius band oriented in the
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Fig. 1. Topology change from S' — @ to create a manifold that is not isochronous, depicted
pictorially and diagrammatically as a rectangle with sides identified. Every timelike curve
originating in X, returns to 2.

space direction, but not the time direction. Every timelike curve from Z(S")
which enters M reemerges through X, after a finite time.

Initial data on 2 cannot be defined without knowing the value of 7 (the
time at which the antipodal map occurs). Consider, for example, a wave (0,
f) which satisfies the one-dimensional wave equation. The general solution
V6, ) =0 — vo) + ¢(0 + vi) (with { and ¢ having period 27) is subject
to additional constraints; consistency requires (0, 1) = (0 — vo) + (0 +
vt — 2yt + m), which depends upon the value of T.

Clearly the example can be extended to any number of disconnected
spaces n X S' — m X S'. The model has been described as the annihilation
of a universe (Borde, 1997). The main purpose of this paper is to consider
kinematics rather than dynamics; however, this particular example is flat—
and hence trivially satisfies Einstein’s equations in 1 + 1 dimensions. The
model can also be extended to higher dimensions. In 2 + 1 dimensions the
space orientation is also reversed by the antipodal map. In 3 + 1 dimensions
we have S* — @, which satisfies Einstein’s equations with a nonzero cosmo-
logical constant (it is an Einstein cylinder with the antipodal map imposed).
The constraints on initial data in the 3 + 1 case can be demonstrated by
considering gravitational waves following null geodesics rather than an
unspecified extraneous wave, in which case the manifold is the combination
of an underlying slowly varying spacetime and a smaller scale ripple.

If the topology change is associated with a measurement, then the mea-
surements at two different times corresponding to a topology change at ¢ =
Ti or at ¢ = T, would be incompatible. The topology change cannot take
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place at both values of T, and the alternative times would impose different
boundary conditions on the problem. To illustrate the non-Boolean logic, we
consider either an unspecified one-dimensional wave, a classical object like
a billiard ball or (in 3 + 1 dimensions) a gravitational wave that is an intrinsic
part of the manifold. In either case, the initial conditions must include a
combination of a forward- and backward-moving wave (or particle), and the
combination depends upon the value of t.

Consider a version of the two-slit experiment with slits S; and S» and
a measurement at ¢ = T to determine if a billiard ball is in the region X =
[x1, x2]. As described above we associate a topology change and time reversal
with the measurement process. The experiment can be carried out with either
Si or S, or both slits open.

With the arrangement of Fig. 2a with only slit Si open, there are no
trajectories consistent with a measurement at ¢+ = 1. Similarly for the case
with only S> open. With both S; and S» open, there is now a range of
trajectories consistent with a measurement at + = T and detection at X, one
of which is shown by the dashed line in Fig. 2b.

These examples show that the probability of going through S; and
reaching X is zero, as is the probability of going through S> and reaching X,
but the probability of going through (Si or S>) and reaching X is not zero.
This is a clear example of non-Boolean logic.

In a technical sense the objectives of this paper have been satisfied by
this simple and well-known example of a geometry which exhibits a type of
context sensitivity. Initial data cannot be specified independently of the topol-
ogy change, and there is a clear causal path from the measurement (antipodal
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Fig. 2. A two-slit experiment: (a) there are no trajectories consistent with only slit 1 or slit 2
being open, (b) there are consistent trajectories (dashed line) when both slits are open.
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map) to the initial surface. The parameter T must be specified before the
geometry can be defined.

Unfortunately, continuity prevents this construction being extended to
more realistic examples such as a connected boundary X; changing to a
nonempty boundary X, with a different topology. It is therefore not suitable
as a model of particles interacting within a universe.

5. SPACETIMES WITH CLOSED TIMELIKE CURVES

Considering compact isochronous geometries, topology change can
occur if CTCs are present in the interior of M. Some (or all) curves from
the initial surface X; have no endpoint; they are trapped near a timelike
curve. The final surface X, has some curves which originated in X and
others that have no past endpoints because they originated from the region
of a CTC. There is no limit on topology change in four dimensions if CTCs
are allowed (Geroch, 1967).

Trivial examples of topology change with CTCs are known (Borde,
1997; Dowker and Garcia, 1997) in which either the initial or final surface
is empty (see, for example, Fig. 3). There are also examples with no timelike
curve from the initial to final surface, because they are all confined to the
interior of M. In this case X, cannot be considered to be in the future of X .
These cases will not be considered further because of the lack of any causal
connection between the two boundaries.

The examples of interest are those where curves from a subset 4 C X;
have an endpoint in B C X, while others are trapped within M. Since X» is

2y
[/ 0 =2m

Fig. 3. Topology change S' — @ on a manifold with CTCs. The timelike curves from X, enter
the manifold and never exit. They asymptotically approach the CTC (dashed line).
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compact there must be at least one point p of X» which is not in B. The curve
through p cannot have a past endpoint in M and must therefore originate
from the region of a CTC.

These geometries do not exhibit quantum phenomena. The topology
change introduces unknown (and probably unknowable) boundary conditions
because some timelike curves do not originate in the initial surface. However,
the topology change places no constraint on the initial data; there is no causal
link from the measurement to the initial state nor any clear mechanism for
nonlocal effects between separated measurements, as seen in quantum
mechanics.

Although there is no dynamical constraint on the formation of CTCs,
Tipler’s theorem shows that Einstein’s equations, plus the weak energy condi-
tion, prevents this mechanism for topology change.

6. NONCOMPACT SPACETIMES

Geroch’s theorem can be applied to externally simple geometries even
when they are not compact because the topology change takes place in a
compact region. An externally simple spacetime would be an appropriate
description for a geon embedded in R*. However, continuity still prevents a
failure of time-orientability from being a mechanism for topology change.

More generally, topology change can take place in noncompact geome-
tries (Krasnikov 1995) because the timelike curves from X; can avoid the
boundaries without being trapped near a closed timelike curve (see, for
example, Fig. 4). These counterexamples can have topology change without
a breakdown of the causal structure.

D

)

]

Fig. 4. Topology change S' — R on a manifold that is not compact. There is no breakdown
of the causal structure.
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Fig. 5. Topology change from S' — S' U S'. Here X, is spacelike, but some timelike curves
from X, return to ;. The surface X, is not entirely spacelike. At points A the timelike curves
are tangent to X,.

7. NONSPACELIKE BOUNDARIES

A further relaxation of the assumptions in Geroch’s theorem is to have
boundaries (one or both) that are not entirely spacelike. The terms initial and
final for the boundaries are not strictly correct, although the majority of the
surface could be spacelike. With such a significant departure from the condi-
tions of Geroch’s theorem, topology change is easily demonstrated. Figures
5 and 6 show a topology change from S' — S' U S'; both examples are not
time-orientable. Figure 5 has an initial spacelike boundary, but the final
boundaries are not spacelike. Figure 6 does not have either an initial or final
spacelike boundary, but it is clearly flat, and therefore a trivial solution to
the field equations. Another feature of Fig. 6 is the causal link between the two

Fig. 6. Topology change from S§' — S' U S'. The manifold is flat, but neither 2, nor X, is
entirely spacelike. At points A the timelike curves are tangent to the surfaces. Note the timelike
curves (dashed curves) joining the different legs of the trousers.
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legs of the trousers, which has some comparisons with an EPR experiment. A
more realistic model of an EPR experiment would be a combination of three
topology-changing regions corresponding to the pair creation, and measure-
ment in the two arms of the experiment.

An externally simple example is shown in Fig. 7, which illustrates R —
R U S': the manifold is not isochronous. The mechanism for topology change
is essentially that of the nonisochronous case (Section 4); the freedom to
allow nonspacelike surfaces permits the construction of nontrivial examples
with a continuous metric. In the examples of Figs. 5 and 7, the initial surface
2 is spacelike and time can be oriented in a finite neighborhood of Z;. It
is the subsequent topology change that turns some timelike geodesics back
to X and obstructs the time-orientability of the geometry.

8. CONCLUSION

In these examples, boundary conditions cannot be specified on the initial
surface without knowing about the subsequent measurement (topology
change). There is a causal link between the measurement and the initial
surface. This breakdown of the causal structure associated with a measurement
will necessarily require a context-dependent theory such as quantum theory
to describe the observations.

All these compact and externally simple examples prevent, or at least
limit, the construction of spacelike boundaries and spacelike hypersurfaces.
It must be stressed that this does not indicate any departure from the equations
or structure of classical general relativity. To require spacelike boundaries is
an extra, convenient, but unwarranted, constraint commonly imposed upon
the theory. It is a constraint that is not justified either by the mathematical
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Fig. 7. Topology change from R — S' U R. Here X, is spacelike, but some timelike curves
from X, return to %,. The surface X, is not entirely spacelike. At points A the timelike curves
are tangent to X,.
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structure or by physical reality. Indeed, what we know about quantum theory
is incompatible with spacetime being a classical hypersurface evolving with
time. Quantum theory gives evidence for the small-scale structure of space-
time, and general relativity could, in return, explain the origins of quantum
phenomena.

Of all the interpretations of quantum mechanics, this work relates closely
to the pragmatic interpretation of quantum mechanics, where the wavefunction
is simply a way of determining the probabilities of the different outcomes
from an experiment.

Consider the classical case; P(n) = 1/6 (n = 1,2, ..., 6) is a probability
function which gives the result of a dice throw, but there is no direct relation-
ship between P(n) and the underlying Newtonian laws of motion. Indeed the
probability function does not depend upon the exact form of the equations
of motion, it depends only upon the structural form and the symmetry. The
classical equations can be expressed as deterministic equations with uniquely
defined trajectories determined by the initial conditions alone. The sets of
initial conditions corresponding to different results satisfy a Boolean algebra.
In principle, a measure on the space of initial conditions can be used to
calculate the probability function P(n). The equations of motion are indepen-
dent of n; this gives the essential symmetry.

With the measurement-dependent effects shown here, general relativity
gives a different structure. A measure over initial conditions and measurement
conditions would also give a Boolean logic as required by Mackey (1963),
but a measure over initial conditions alone would give a different logical
structure which must be orthomodular (Hadley, 1997; Beltrametti and Cassi-
nelli, 1981). The orthomodular structure can be represented by the projections
on a Hilbert space (Beltrametti and Cassinelli, 1981). Given the Hilbert space
structure, it is well known that the equations for the wavefunction can be
derived from symmetry arguments (Ballentine, 1989; Weinberg, 1995). As
in the classical case, the probability function does not depend upon the details
of the equations of motion, just on their form.
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